A Novel Machine Learning Algorithm to Predict the Lewy Body Dementias
-
- STATUS
- Recruiting
-
- participants needed
- 86
-
- sponsor
- National and Kapodistrian University of Athens
Summary
Parkinson's disease dementia (PDD) and Dementia with lewy bodies (DLB) are dementia syndromes that overlap in many clinical features, making their diagnosis difficult in clinical practice, particularly in advanced stages. We propose a machine learning algorithm, based only on non-invasively and easily in-the-clinic collectable predictors, to identify these disorders with a high prognostic performance.
Description
The algorithm will be develop using dataset from two specialized memory centers, employing a sample of PDD and DLB subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. A restricted set of information regarding clinico- demographic characteristics, 6 neuropsychological tests (mini mental, PD Cognitive Rating Scale, Brief Visuospatial Memory test, Symbol digit written, Wechsler adult intelligence scale, trail making A and B) was used as predictors. Two classification algorithms, logistic regression and K-Nearest Neighbors (K-NNs), will be investigated for their ability to predict successfully whether patients suffered from PDD or DLB.
Details
Condition | Dementia, Dementia, Alzheimer's Disease, Alzheimer's Disease |
---|---|
Age | 50years - 90years |
Treatment | machine learning model |
Clinical Study Identifier | NCT04448340 |
Sponsor | National and Kapodistrian University of Athens |
Last Modified on | 16 February 2024 |
How to participate?
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreSimilar trials to consider
Browse trials for
Not finding what you're looking for?
Sign up as a volunteer to stay informed
Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteerStudy Definition
WikipediaAdd a private note
- Select a piece of text.
- Add notes visible only to you.
- Send it to people through a passcode protected link.